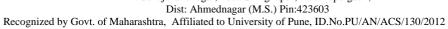


Sanjivani Rural Education Society's **SANJIVANI ARTS, COMMERCE AND SCIENCE COLLEGE** At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

Department of Physics

PO's. No.	Program Outcomes : B.Sc. Physics
	Upon completion of this programme the student will able to
PO1	Demonstrate a comprehensive understanding of the fundamental principles and theories in classical mechanics, electromagnetism, quantum mechanics, and thermodynamics.
PO2	Understand the principles of electronics and be able to design and analyze basic electronic circuits.
PO3	Conduct experiments and use laboratory equipment to collect, analyze, and interpret experimental data accurately.
PO4	Utilize modern computational tools and techniques to model and simulate physical phenomena and solve complex physics problems.
PO5	Communicate scientific concepts effectively through oral presentations, technical reports, and scientific writing.
PO6	Apply physics knowledge and skills to real-world problems, including technological advancements and societal challenges.
PO7	Develop critical thinking skills to analyze and evaluate scientific literature and research findings in the field of physics.

Sanjivani Rural Education Society's **SANJIVANI ARTS, COMMERCE AND SCIENCE COLLEGE** At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

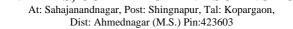

Program Specific Outcomes (PSO's) for B.Sc. Physics

PSO's. No.	Program Specific Outcomes : B.Sc. Physics Upon completion of this programme the student will able to
PSO1	Comprehensive Understanding of Classical and Modern Physics
PSO2	Proficiency in Electronics and Circuit Design
PSO3	Laboratory Skills and Experimental Techniques
PSO4	Computational and Modeling Skills
PSO5	Communication and Documentation of Scientific Knowledge

PSO6	Application of Physics in Technological and Societal Contexts
PSO7	Critical Thinking and Research Analysis

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603

F.Y.B.Sc. SemesterI		
Title of the Course and Course Code	Mechanics and Properties of matter (PHY111)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
C01	Identify fundamental principles in mechanics.	1
CO2	Illustrate Newton's laws of gravitation and Kepler's laws of planetary motion. Explain viscosity of Fluid, law of energy conservation and applications of Bernoulli's theorems with examples.	2
CO3	Apply the physical principles of moment of inertia in terms of the mass distribution from the rotational axis to various symmetrical bodies.	3
CO4	Analyze the properties and applications of elasticity with experiments.	4
CO5	Justify the quantitative problem-solving skills in all the topics covered.	5
CO6	Develop an intuition towards problems solving and design realistic applications in the physical world.	6
Title of the Course and Course Code	Physics principle & its Applications (PHY112)	Number of Credits:02
On completion of the course, the students will be able to:		Bloom's Cognitive level
CO1	To understand the general structure of atom, spectrum of hydrogen atom	1
CO2	To understand the atomic excitation and LASER principles.	2
CO3	To understand the bonding mechanism and its different types.	3


CO4	To demonstrate an understanding of electromagnetic waves and its spectrum.	4
CO5	To demonstrate an understanding of electromagnetic waves and its spectrum.	5

CO6	To demonstrate quantitative problem solving skills in all the topics covered.	6	
Title of the Course and Course Code	Physics Practical –I(PHY113)	Number of Credits:02	
Oı	n completion of the course, the students will be able to:	Bloom's Cognitive level	
CO1	Identify various components, devices, instruments and tools for specific applications. Recall the theory associated with each experiment.	1	
CO2	Illustrate skill of proper use of tools and test and measuring instruments.	2	
CO3	Calculate the values of physical quantities using suitable instruments.	3	
CO4	Explain the results by integrating the theory with experimental observations.	4	
CO5	Evaluate various physical quantities and measure the errors therein.	5	
CO6	Perform the experiments using proper procedures and specify the outcomes. Integrate the measuring instrumentation system with the experimental circuit as required.	6	
	F.Y.B.Sc. Semester II		
Title of theCourse andCourse Code	Heat and Thermodynamics (PHY121)	Number of Credits:02	

On completion of the course, the students will be able to:		Bloom's Cognitive level
CO1	Recall the concepts of Thermodynamics.	1
CO2	Discuss the behavior of real gases.	2
CO3	Compute the thermodynamic quantities associated with different types of processes.	3
CO4	Explain the working of heat engine, different types of thermometers. Compare types of heat engines and their working; temperature scales.	4
CO5	Determine work done, efficiency of heat engines and coefficient of performance of refrigerators, temperatures using different scales and principles of thermometers.	5
CO6	Specify the different types of thermodynamic processes in daily life	6
Title of the Course and Course Code	Electricity and Magnetism (PHY122)	Number of Credits:02
On completion of the course, the students will be able to:		Bloom's Cognitive

		level
CO1	Recall the concepts associated with stationary charges.	1
CO2	Discuss the atomic view of polarization of matter. Explain the correlation in electricity and magnetism.	2
CO3	Compute the boundary conditions and calculate quantities like current, voltage, power, phase, impedance, etc in DC and AC circuits.	3
CO4	Classify the phase relations in AC circuits.	4
CO5	Compare the growth and decay of current in DC circuits.	5
CO6	Write the phase relations between different parameters (like current, voltage, power and impedance) in simple electronic circuits comprising of resistors, inductors and capacitors.	6

PRINCIPAL Sanjivani Arts,Commerce & Science College,Kopargaon

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

Title of theCourse andCourse Code	Physics Practical-II(PHY123)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Identify various components, devices, instruments and tools for specific applications. Recall the theory associated with each experiment.	1
CO2	Illustrate skill of proper use of tools and test and measuring instruments.	2
CO3	Calculate the values of physical quantities using suitable instruments.	3
CO4	Explain the results by integrating the theory with experimental observations.	4
CO5	Evaluate various physical quantities and measure the errors therein.	5
CO6	Perform the experiments using proper procedures and specify the outcomes. Integrate the measuring instrumentation system with the experimental circuit as required.	6
	S.Y.B.Sc.Semester IV	I
Title of the Course and Course Code	Oscillations, Waves and Sound(PHY241)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Define and describe concepts of undamped, damped and forced	1
	Oscillations with rigorous mathematical treatment	1

	Oscillations with rigorous mathematical treatment.	
CO2	Exemplify mathematical models for analysis of longitudinal and transverse waves.	2

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

	Solve problems in wave mechanics, Doppler Effect and acoustic measurements.	3
CO4	Explain the concept of reverberation of sound and reverberation time.	4
CO5	Discriminate between undamped, damped and forced oscillations.	5
CO6	Develop mathematical treatment for wave motion in different modes.	6
Title of the Course and Course Code	Optics(PHY 242)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Define terms interference, diffraction and polarization.	1
CO2	Articulate concepts of polarization of light, types of polarization, generation of polarized light. Illustrate concepts of Fresnel and	2
	Fraunhofer's diffraction.	
CO3	Fraunhofer's diffraction. Solve problems based on wavelength and refractive index measurement using Newton's ring, Michelson interferometer for closely spaced wavelength, anti reflection coating, resolving power of telescope and grating, Malus law, retarders.	3
CO3 CO4	Solve problems based on wavelength and refractive index measurement using Newton's ring, Michelson interferometer for closely spaced wavelength, anti reflection coating, resolving power of	3
	Solve problems based on wavelength and refractive index measurement using Newton's ring, Michelson interferometer for closely spaced wavelength, anti reflection coating, resolving power of telescope and grating, Malus law, retarders. Explain the concept of thin film interference for uniform and non uniform film and their potential applications. Analyze different types	

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon,

Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

Title of theCourse andCourse Code	Practical course III(PHY243)	Number of Credits:02
(On completion of the course, the students will be able to:	Bloom's Cognitive level

CO1	Define the objectives of a given experiment. Identify various	1
	components, devices, instruments and tools for specific applications.	
CO2	Exemplify proper use of tools and testing of measuring instruments.	2
	Summarize the observations taken during the experimentation and tabulate the results.	
CO3	Demonstrate handling of tools and instruments used for taking	3
03	Demonstrate handling of tools and instruments used for taking observations	3
CO4	Analyze the observed data. Calculate physical quantity as per the aim of experiment.	4
CO5	Standardize method to prepare technical report writing for laboratory exercises. Evaluate errors in observed values of physical quantities.	5
CO6	Construct circuits from drawings, the block diagrams for a given instrument / equipment. Develop skills of optical leveling, component testing and plotting of graphs with proper scale	6
	S.Y.B.Sc. Semester III	
Title of the	Electronics I (PHY232)	Number of
Course and Course Code		Credits:02
		Bloom's
On completion of the course, the students will be able to:		Cognitive level
CO1	Apply different theorems and laws to electrical circuits.	1

CO2

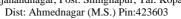
Understand the relations in electricity.

2

Title of the Course and	Mathematical methods in physics -I (PHY231)	Number of Credits:02
CO6	Understand the Boolean algebra and logic circuits and to build the different circuits.	6
CO5	Design circuits using transistors and applications of operational amplifiers.	5
CO4	Understand the functions of operational amplifiers.	4
CO3	Understand the parameters, characteristics and working of transistors.	
		3

Course Code		
Oi	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Understand the complex algebra useful in physics courses.	1
CO2	Understand the concept of partial differentiation.	2
CO3	Understand the role of partial differential equations in physics.	3
CO4	Understand vector algebra useful in mathematics and physics.	4
CO5	Understand the concept of singular points of differential equations.	5
CO6	Compile the data and verify the results obtained.	6
TitleoftheCourseandCourseCode	Practical course IV(PHY233)	Number of Credits:02

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012


O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Define the objectives of a given experiment. Identify Various	1
	components, devices, instruments and tools for specific applications.	
CO2	Exemplify proper use of tools and testing of measuring instruments.	2
	Summarize the observations taken during the experimentation and tabulate the results.	
CO3	Demonstrate handling of tools and instruments used for taking observations. Use computer software for data generation and plotting	3
CO4	Analyze the observed data, calculate physical quantity as per the aim of experiment.	4
CO5	Standardize method to prepare technical report writing for laboratory exercises. Evaluate errors in observed values of physical quantities.	5
CO6	Construct circuits from drawings, block diagrams for a given instrument / equipment. Develop skills of optical leveling, component testing and plotting of graphs with proper scale.	6
	T.Y.B.Sc. Semester V	
Title oftheCourseandCourseCode	Mathematical Methods in Physics- II (PHY351)	Number of Credits:02

0	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Recall the knowledge of calculus, vectors, vector calculus.	1
CO2	Illustrate methods of solving partial differential equations with the examples of important partial differential equations in Physics.	2
CO3	Apply the various methods for solving differential equations in various physical problems such as in quantum mechanics, which they will learn in future courses in detail.	3

PRINCIPAL Sanjivani Arts,Commerce & Science College,Kopargaon

Title of the Course and Course Cod	d Classical Mechanics (PHY353)	Number of Credits:02
	plane wave equations.	
CO6	Compile Maxwell's set of equations and develop electromagnetic	6
	electrons in atoms. Distinguish between diamagnetic and paramagnetic materials.	
CO5	Compare magnetic properties of material on the basis of total spin of electrons in atoms. Distinguish between diamagnetic and	5
	Explain motion of charged particles in the electromagnetic field. Deduce Biot Savart's law from Ampere's law.	4
CO3	Demonstrate special techniques to calculate potential due to some charge distribution.	3
	law. Explain mechanism of polarization in dielectrics.	2
CO2	Articulate concepts of evaluating electric fields due to line charge, surface charge and volume charge using Coulomb's law and Gauss's	2
CO1	Define electric fields, electric potential, displacement vector, electric Polarization.	1
	- · ·	Cognitive level
	On completion of the course, the students will be able to:	Bloom's
Course aı Course Cod		Credits:02
Title of t		Number of
	Legendre polynomials and Bessel functions and their differential equations.	
CO6	Formulate the special functions, such as the Hermite polynomials, the	6
005	systems. Compare Cartesian, spherical and cylindrical coordinate systems.	5
CO5	etc. Determine transformation equations and construct various coordinate	5
CO4	Explain the Fourier analysis of periodic Functions and reconstruct physical problems such as vibrating strings	4

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

Recognized by Gove of Manarashira, Anniace to Oniversity of Fune, 12.10.10/Att/Acc/150/2012	GROUP
On completion of the course, the students will be able to:	Bloom's
	Cognitive
	level

CO1	Describe methods of solving equations of motions.	1
CO2	Explain the necessity of considering constraints.	2
CO3	Apply different techniques to find solutions to problems in Mechanics.	3
CO4	Compare and contrast Newtonian, Lagrangian and Hamiltonian approaches.	4
CO5	Determine the constraint equations and decide the generalized coordinates to be used.	5
CO6	Hypothesize rotating frames of references.	6
	·	
Title of theCourse andCourse Code	Atomic and Molecular Physics (PHY354)	Number of Credits:02
0	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Recall and recognize the gradual development of the Atomic theory and distinguish between various atomic models.	1
CO2	Explain the effect of magnetic field on atomic spectra.	2
CO3	Solve the problems in Atomic theory.	3
CO4	Relate atomic theory to analyze spectra.	4
CO5	Evaluate spectroscopic data to identify elements using atomic spectra.	5
	Evaluate spectroscopic data to identify elements using atomic spectra.	5
CO6	Develop mathematical treatment for the Bohr atom, Zeeman effect and Raman spectra.	6

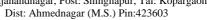
At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon,

TitleoftheCourseandCourse Code	Computational Physics (PHY355)	Number of Credits:03
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Develop the ability to write, debug, and optimize code in programming languages commonly used in scientific computing, such as Python, C++, or MATLAB.	1
CO2	Utilize numerical techniques like finite difference methods, Monte Carlo simulations, and iterative algorithms to solve physics problems that are difficult or impossible to solve analytically.	2
CO3	Use computational tools to simulate and analyze complex physical systems, such as particle interactions, fluid dynamics, and quantum mechanical systems.	3
CO4	Apply computational methods to interdisciplinary problems, collaborating with experts from other fields to tackle challenges at the intersection of physics and other sciences.	4
CO5	Develop skills in generating visual representations of simulation results, allowing for better understanding and communication of complex physical concepts.	5
CO6	Create and implement computational models to represent real-world physical phenomena, and analyze the resulting data to extract meaningful insights.	6
Title of theCourse andCourse Code	Elements of Material Science (PHY 356)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Describe types of materials, their properties and identify types of defects.	1
CO2	Explain functional properties of ceramic bulk materials and different nano materials.	2

CO3	Apply knowledge of mathematics and advanced science and	3
005		5
<u> </u>	engineering principles to materials systems.	4
CO4	Explain applications of Polymers for research and industrial	4
	applications; determine concentration, purity of material and	
005	molecular weight.	~
CO5	Select materials for design and construction. Test materials using	5
	different characterization methods with the fundamental principles	
001	underlying and connecting the structure and properties.	
CO6	Design and construct different Phase Diagrams under different	6
	combinations and thermodynamic states.	
Title of the	Physics Practical Paper –I (PHY357)	Number of
Course and		Credits:02
Course Code		
O	n completion of the course, the students will be able to:	Bloom's
		Cognitive
001		level
CO1	Describe different experimental techniques to determine values of	1
	various constants, coefficients, parameters.	
CO2	Arrange the apparatus as per the requirements of the aims and	2
	objectives of the experiment.	
CO3	Demonstrate the procedure to perform the experiments and the skills	3
	required for the particular experiment.	_
CO4	Explain the theory behind the formulae used and Validate the	4
	hypotheses.	
CO5	Standardize the entire procedure to obtain reliable, repeatable results.	5
		_
COC	Deferme the environment to be let all 1 to 11 to 12 the	
CO6	Perform the experiment, tabulate the data, identify the sources of	6
	errors, and show how to minimize the errors.	
Title of the	Physics Practical Paper–II-(PHY358)	Number of
Course and		Credits:03
Course Code		

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603

0	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Describe different experimental techniques to determine values of various constants, coefficients, parameters.	1
CO2	Arrange the apparatus as per the requirements of the aims and objectives of the experiment.	2
CO3	Demonstrate the procedure to perform the experiments and the skills required for the particular experiment	3
CO4	Explain the theory behind the formulae used and Validate the hypotheses.	4
CO5	Standardize the entire procedure to obtain reliable, repeatable results.	4, 5
CO6	Perform the experiment, tabulate the data, identify the sources of errors, and show how to minimize the errors.	6
Title of the Course and Course Code	Project I- (PHY 359)	Number of Credits:02
	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Develop the ability to formulate research questions, design experiments or studies, and conduct thorough investigations in a specific area of physics.	1
CO2	Apply critical thinking skills to analyze and interpret experimental or theoretical data, identify patterns, and propose solutions to complex physics problems.	2
CO3	Acquire hands-on experience with experimental setups, data collection methods, and laboratory equipment relevant to the chosen project topic.	3
CO4	Learn techniques for processing, analyzing, and interpreting data, including statistical methods and visualization tools.	4


PRINCIPAL Sanjivani Arts,Commerce & Science College,Kopargaon

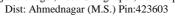
Г

Sanjivani Rural Education Society's SANJIVANI ARTS, COMMERCE AND SCIENCE COLLEGE At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon,

CO6	Showcase creativity and innovation by proposing novel approaches or	6
	solutions to physics-related challenges.	

Title of the	Introduction to Andring (DIIV 25101)	Number of
Course and	Introduction to Arduino - (PHY 3510J)	Credits:02
Course Code		Creans:02
	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Students will be able to understand and use various Arduino Boards, and its various components, Input / Output Pins, Input / Output Devices.	1
CO2	Understand general concepts of Programming Arduino Boards.	2
CO3	Apply the knowledge gain to design applications using Arduino in different domains.	3
CO4	To analyze and evaluate the performance of various Arduino based devices	4
CO5	Learn and understand about any new IDE, compiler, and MCU chip in Arduino compatible boards or similar types.	5
CO6	To create automotive ideas and project based on internet of things.	6
Title of the	Physics Workshop skills (PHY 3511L)	Number of
Course and		Credits:02
Course Code		
Oı	n completion of the course, the students will be able to:	Bloom's Cognitive level
	Develop proficiency in using common laboratory equipment and tools used in physics experiments, including measurement devices, oscilloscopes, power supplies, and data acquisition systems.	1

PRINCIPAL Sanjivani Arts, Commerce & Science College,Kopargaon


CO2	Gain the ability to set up and calibrate experimental apparatus for various physics experiments, demonstrating an understanding of experimental design and instrument operation.	2
CO3	Acquire skills in collecting accurate data during experiments, followed by proper data analysis using appropriate statistical methods and software tools.	3
CO4	Develop effective scientific communication skills by preparing clear and concise laboratory reports, including proper formatting, data presentation, and analysis.	4
CO5	Apply creative thinking to design experiments, propose modifications to existing setups, and suggest novel approaches to address scientific questions.	5
CO6	Create organized and detailed experimental documentation, which may include photographs, diagrams, and notes, for future reference and presentation.	6

	T.Y.B.Sc. Semester VI	
Title of the	Solid State Physics (PHY361)	Number of
Course and		Credits:02
Course Code		
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	List seven crystal systems.	1
CO2	Explain free electron theory and band theory.	2
CO3	Calculate lattice parameter from given XRD pattern.	3

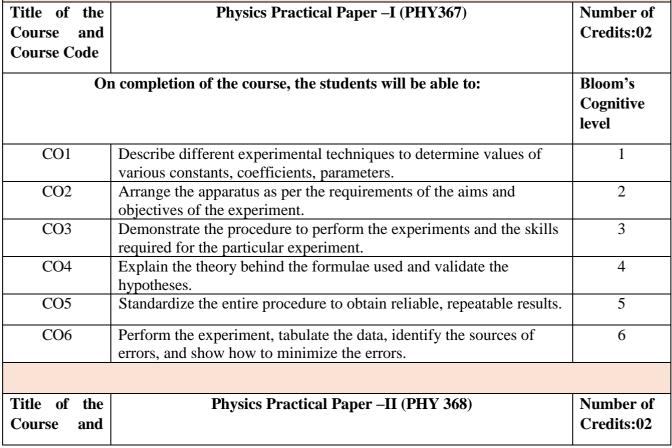
CO5 Evaluate the density of the state equation in 3D. 5 CO6 Specify the importance of magnetic materials. 6 CO6 Specify the importance of magnetic materials. 6 Course and Course Code Quantum Mechanics (PHY362) Number Credit Credit Credit Credit Course Code On completion of the course, the students will be able to: Bloom Cognit level CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, 1, m ₁ , m ₈ and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 On completion of the course, the students will be able to: Bloom Cognit level			GROOP OF I
CO6 Specify the importance of magnetic materials. 6 Title of the Course and Course (odd) Quantum Mechanics (PHY362) Number Credit Credit Credit Course Code On completion of the course, the students will be able to: Bloom Cognit level CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, 1, mi, ms, and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code On completion of the course, the students will be able to: Bloom Cognit level	CO4	Identify the structure of materials.	4
Title of the Course and Course Code Quantum Mechanics (PHY362) Number Credit On completion of the course, the students will be able to: Bloom Cognit level Bloom Cognit CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, 1, m ₁ , m _s and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Thermodynamics and Statistical physics (PHY3603) Number Credit Credit On completion of the course, the students will be able to: Bloom Cognit level	CO5	Evaluate the density of the state equation in 3D.	5
Course Code Quantum Mechanics (PHY362) Credit Course Code On completion of the course, the students will be able to: Bloom Cognitievel CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, l, m _l , m _s and degeneracy etc. 6 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit redit redi	CO6	Specify the importance of magnetic materials.	6
Course Code Quantum Mechanics (PHY362) Credit Course Code On completion of the course, the students will be able to: Bloom Cognitievel CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, l, m _l , m _s and degeneracy etc. 6 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit redit redi			
On completion of the course, the students will be able to: Cogniti CO1 Describe and learn theoretical aspects at Quantum Level. 1 CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, 1, m ₁ , m _s and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Numbur Credit credit course, the students will be able to: On completion of the course, the students will be able to: Bloom Cognitievel	Course and	Quantum Mechanics (PHY362)	Number of Credits:02
CO2 Clarify more about the insight of the microscopic world. 2 CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, l, ml, msand degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit Course Code On completion of the course, the students will be able to: Bloom Cogniti level 1	O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO3 Apply Schrodinger's equation for different cases of potential (V). 3 CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, l, m _l , m _s and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit Review Hydrogen of the course, the students will be able to:	CO1	Describe and learn theoretical aspects at Quantum Level.	1
CO4 Explain the concept of operators and apply it in Quantum mechanics. 4 CO5 Review Hydrogen atom model and quantum numbers n, l, m _l , m _s and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Course Code On completion of the course, the students will be able to: Bloom Cognit level	CO2	Clarify more about the insight of the microscopic world.	2
CO5 Review Hydrogen atom model and quantum numbers n, l, m ₁ , m _s and degeneracy etc. 5 CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit Credit Course Code On completion of the course, the students will be able to: Bloom Cognit level	CO3	Apply Schrodinger's equation for different cases of potential (V).	3
degeneracy etc. Image: CO6 Write Schrodinger's equation in a Spherically symmetric polar coordinate system. 6 Title of the Course and Course Code Thermodynamics and Statistical physics (PHY3603) Number Credit Credit Course Code On completion of the course, the students will be able to: Bloom Cognit level	CO4	Explain the concept of operators and apply it in Quantum mechanics.	4
coordinate system. Title of the Course and Course and Course Code On completion of the course, the students will be able to: Bloom Cognit level	CO5		5
Course and Course Code Credit On completion of the course, the students will be able to: Bloom Cognit level	CO6		6
Course and Course Code Credit On completion of the course, the students will be able to: Bloom Cognit level			
On completion of the course, the students will be able to: Cognit level	Course and	Thermodynamics and Statistical physics (PHY3603)	Number of Credits:02
		n completion of the course, the students will be able to:	Bloom's Cognitive level
	CO1	Define thermodynamic quantities and functions.	1

CO2	Estimate the probabilities in statistical processes.	2
CO3	Apply the knowledge of Entropy and density of states to understand the concept of temperature.	3

CO4	Explain the quantum statistics and differentiate between classical and quantum statistics.	4
CO5	Compare the MB, BE and FD statistics and classify particles according to them.	5
CO6	Design statistical tools to study thermodynamic interactions in ensembles.	6
Title of the Course and Course Code	Nuclear Physics(PHY364)	Number of Credits:02
Oı	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Define and describe basic properties of the nucleus.	1
CO2	Explaintheconceptofradioactivity.Classifydifferentradiationdetectors and nuclear models.	2
CO3	Solve problems related to nuclear and particle physics.	3
CO4	Explain nuclear reaction dynamics, nuclear reactors and accelerators.	4
CO5	Compare nuclear energy with other energy sources.	5
CO6	Specify applications of accelerators and detectors. Compile knowledge of elementary particles to understand nuclear phenomena.	6
Title of the Course and Course Code	Electronics -II(PHY365)	Number of Credits:02

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

	On completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Apply advanced techniques, such as network theorems (Thevenin's and Norton's), Laplace transforms, and frequency domain analysis, to analyze and solve complex electronic circuits.	1
CO2	Understand the principles of operation, characteristics, and applications of semiconductor devices, including diodes, bipolar junction transistors (BJTs), and field-effect transistors (FETs).	2
CO3	Analyze the design and operation of amplifier circuits, including single-stage and multistage configurations, and comprehend concepts like gain, bandwidth, and input/output impedance.	3
CO4	xplore the fundamentals of electronic measurement and instrumentation, including measurement accuracy, sensors, and interfacing techniques.	4
CO5	Apply the knowledge gained throughout the course to design, build, and analyze electronic circuits or systems, demonstrating practical application of electronic principles.	5
CO6	Design and analyze basic digital logic circuits, including combinational and sequential circuits, using appropriate design tools.	6


Title of the	Lasers-(PHY366)	Number of
Course and Course Code		Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
CO1	Describe the requirements for a system to act as a laser.	1
CO2	Explain concept of Laser fundamentals, pumping mechanism pumping schemes.	2
CO3	Demonstrate potential applications of Lasers.	3

PRINCIPAL Sanjivani Arts,Commerce & Science College,Kopargaon

Sanjivani Rural Education Society's SANJIVANI ARTS, COMMERCE AND SCIENCE COLLEGE At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012 CO4 Differentiate the various types of Lasers and their means of excitation. CO5 Compare three level and four level Laser systems. CO6 Design and develop different laser systems. CO6 Design and develop different laser systems.

Course Code		
O	n completion of the course, the students will be able to:	Bloom's Cognitive level

4

5

6

At: Sahajanandnagar, Post: Shingnapur, Tal: Kopargaon, Dist: Ahmednagar (M.S.) Pin:423603

Bist Finnednugur (1916) Finn (2000)			
Recognized by Govt. of Maharashtra,	Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012		

CO1	Describe different experimental techniques to determine values of various constants, coefficients, parameters.	1
CO2	Arrange the apparatus as per the requirements of the aims and objectives of the experiment.	2
CO3	Demonstrate the procedure to perform the experiments and the skills required for the particular experiment.	3
CO4	Explain the theory behind the formulae used and validate the hypotheses.	4
CO5	Standardize the entire procedure to obtain reliable, repeatable results.	5
CO6	Perform the experiment, tabulate the data, identify the sources of errors, and show how to minimize the errors.	6
Title of the Course and Course Code	Project II (PHY 369)	Number of Credits:02
O	n completion of the course, the students will be able to:	Bloom's Cognitive level
C01	Develop the ability to formulate research questions, design experiments or studies, and conduct thorough investigations in a specific area of	Cognitive level
CO1 CO2	Develop the ability to formulate research questions, design experiments	Cognitive level
CO1 CO2 CO3	Develop the ability to formulate research questions, design experiments or studies, and conduct thorough investigations in a specific area of physics. Apply critical thinking skills to analyze and interpret experimental or theoretical data, identify patterns, and propose solutions to complex physics problems. Acquire hands-on experience with experimental setups, data collection	Cognitive level
CO1 CO2 CO3 CO4	Develop the ability to formulate research questions, design experiments or studies, and conduct thorough investigations in a specific area of physics. Apply critical thinking skills to analyze and interpret experimental or theoretical data, identify patterns, and propose solutions to complex physics problems. Acquire hands-on experience with experimental setups, data collection methods, and laboratory equipment relevant to the chosen project topic. Learn techniques for processing, analyzing, and interpreting data,	Cognitive level
CO1 CO2 CO3 CO4 CO5	Develop the ability to formulate research questions, design experiments or studies, and conduct thorough investigations in a specific area of physics. Apply critical thinking skills to analyze and interpret experimental or theoretical data, identify patterns, and propose solutions to complex physics problems. Acquire hands-on experience with experimental setups, data collection methods, and laboratory equipment relevant to the chosen project topic.	Cognitive level 1 2 3

SANJIVANI GROUP OF INSTITUTES

Dist: Ahmednagar (M.S.) Pin:423603 Recognized by Govt. of Maharashtra, Affiliated to University of Pune, ID.No.PU/AN/ACS/130/2012

Title of theCourse andCourse Code	Applications of Internet of things (IOT) PHY-3610(Y)	Number of Credits:02
On completion of the course, the students will be able to:		

On completion of the course, the students will be able to:

		level
CO1	Students should have a solid understanding of the basic concepts, principles, and components of the Internet of Things, including sensors, actuators, communication protocols, data analytics, and cloud computing.	1
CO2	Students should be familiar with various sensor types used in IoT applications, their working principles, and their applications in different fields. They should be able to select appropriate sensors for specific IoT scenarios.	2
CO3	Students should be able to design and implement systems for data acquisition from sensors, signal processing, and noise reduction. They should understand methods for handling raw sensor data and preparing it for analysis.	3
CO4	Students should be able to perform basic data analysis on IoT- generated data and visualize the results using appropriate tools and techniques.	4
CO5	Students should understand the ethical and social implications of IoT, including privacy concerns, data security, and potential societal impacts.	5
CO6	Students should have the skills to develop simple IoT applications, including setting up IoT devices, writing code to interface with sensors and actuators, and creating basic IoT applications.	6
Title of the		Number of
Course Code	Microcontroller PHY-3611 SEC (AA)	Credits:02
On completion of the course, the students will be able to:		Bloom's Cognitive level
CO1	Students should gain a solid understanding of what microcontrollers are, how they function, and their applications in various electronic systems.	1

CO2	Students should be proficient in programming microcontrollers using a	2
	suitable programming language (such as C or assembly language).	
	They should be able to write, debug, and modify code to control	
	microcontroller peripherals and perform tasks.	
CO3	Understanding the concept of real-time systems and how	3
	microcontrollers are used in real-time applications.	
CO4	Students should be able to apply their knowledge to design and	4
	implement microcontroller-based projects. This could involve	
	integrating multiple components and sensors, programming logic, and	
	creating a functional prototype.	
CO5	Students should develop skills to troubleshoot and debug	5
	microcontroller-based systems.	
CO6	Students should learn how to design and develop embedded systems	6
	using microcontrollers. This includes interfacing various sensors,	
	actuators, and communication modules with microcontrollers.	

